A LASSO-penalized BIC for mixture model selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non asymptotic penalized criterion for Gaussian mixture model selection

Specific Gaussian mixtures are considered to solve simultaneously variable selection and clustering problems. A non asymptotic penalized criterion is proposed to choose the number of mixture components and the relevant variable subset. Because of the non linearity of the associated Kullback-Leibler contrast on Gaussian mixtures, a general model selection theorem for MLE proposed by Massart (200...

متن کامل

Xtended Bic Criterion for Model Selection

Model selection is commonly based on some variation of the BIC or minimum message length criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code length/model complexity) and one for the data given the model (message length/data likelihood). For problems such as change detection, unsupervised segmentation or data clustering it is common p...

متن کامل

Extended Bic Criterion for Model Selection

Model selection is commonly based on some variation of the BIC or minimum message length criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code length/model complexity) and one for the data given the model (message length/data likelihood). For problems such as change detection, unsupervised segmentation or data clustering it is common p...

متن کامل

Gene set selection via LASSO penalized regression (SLPR)

Gene set testing is an important bioinformatics technique that addresses the challenges of power, interpretation and replication. To better support the analysis of large and highly overlapping gene set collections, researchers have recently developed a number of multiset methods that jointly evaluate all gene sets in a collection to identify a parsimonious group of functionally independent sets...

متن کامل

Model Selection for Mixture Models Using Perfect Sample

We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Data Analysis and Classification

سال: 2013

ISSN: 1862-5347,1862-5355

DOI: 10.1007/s11634-013-0155-1